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A simple model for an interface moving in a disordered medium is presented. The model exhibits
a transition between the two universality classes of interface growth in the presence of quenched
disorder. Using this model, it is shown that the application of constraints to the local slopes of
the interface produces avalanches of growth that become relevant in the vicinity of the depinning
transition. The study of these avalanches reveals a singular behavior at the depinning transition that
explains a recently observed divergency in the equation of motion of the interface. The anisotropy
in the medium is also studied as a possible source of the divergency in the equation of motion.

PACS number(s): 47.55.Mh, 68.35.Fx

The problem of interface motion in disordered media
has attracted considerable attention recently [1]. In a
typical realization of the problem a d-dimensional inter-
face moves in a (d + 1)-dimensional disordered medium,
driven by an external force F. The interface is assumed
to be oriented along the longitudinal # direction, and is
specified by the height y(&,t¢). For small forces the in-
terface is pinned by the random quenched impurities of
the medium, and the average velocity is zero. Above a
critical value F,, the external force overcomes the effect
of the impurities, and the interface moves with a finite
velocity. Near the threshold, the velocity scales as

v~ fo, (1)

where f = F/F, — 1 is the reduced force, and 6 the
velocity exponent.

The fluctuations of the interface are characterized by
the scaling of the local interface width w(¢) with the size
of the window of observation £

w(l) ~ £, ()

The roughness exponent « characterizes the different uni-
versality classes of interface growth phenomena.

In a recent numerical study, Amaral et al. [2] have
shown that the universality classes can also be classified
according to the behavior of the coefficient A of a nonlin-
ear term of the form (Vy)? in the equation of motion of
the interface.

One of the universality classes is described by an equa-
tion similar to the Kardar-Parisi-Zhang (KPZ) equation
[3] but with a quenched disorder term 7n(Z,y)

Ay(Z,t) = Viy + A(Vy)? + n(&,y) + F (3)

with the coefficient A diverging at the depinning transi-
tion as

A(f) ~ £, (4)

where ¢ ~ 0.64 [2]. The roughness exponent at the de-
pinning transition in (1 + 1) dimensions is o ~ 0.63 and
can be obtained by a mapping onto directed percolation
[4,5]. We refer to this universality class as directed per-
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colation depinning (DPD).

A second universality class is described, at the depin-
ning transition, by an equation of the Edwards-Wilkinson
type [6] with quenched disorder

dy(Z,t) = V3y + n(&,y) + F. (5)

Models with A = 0 (for any force), or A — 0 (when
F — F[), belong to the universality class of (5). Ana-
lytical [7] and numerical [8] (using the height-height cor-
relation function) studies in (1 + 1) dimensions yield a
roughness exponent a ~ 1. However, an anomalous ex-
ponent o ~ 1.23 — 1.25 [9-11] is found when the scal-
ing of the total interface width, W (L) ~ L*, with the
system size L is used to calculate the roughness expo-
nent. This universality class is referred to as quenched
Edwards-Wilkinson (QEW).

In this paper we study the possible mechanisms that
generate the different scaling behavior inherent to each
universality class. In particular, we study the origin of
the singularity in the coefficient A observed for the DPD
universality class.

In the first part of the paper, we argue that the differ-
ent universality classes arise due to constraints imposed
on the local slopes of the interface. To illustrate this
point, we introduce a simple model that exhibits a tran-
sition between the two universality classes of interface
growth in disordered media. When the constraint to
the slopes is absent, the QEW universality class is ob-
tained, and a super-rough interface [12], characterized by
aroughness exponent a > 1, is found. On the other hand,
the DPD result is obtained when longitudinal— along the
Z direction— fluctuations of the interface height are al-
lowed, and the growth rule is restricted by a generalized
solid-on-solid (SOS) condition.

The generalized SOS condition is a universal feature
appearing in all the models of the DPD universality
class. It is referred to as “erosion of overhangs” in Ref.
[5], and it is analogous to the restricted SOS condition
that imposes a bound in the local slope of the interface
ly(x £ 1,t) — y(z,t)| < 1. The restricted SOS condition
was originally introduced in simple models of growth with
time-dependent noise [13]. In these type of models, the
constraint to the slopes is commonly associated with lon-
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gitudinal propagation of growth that generates nonlinear-
ities in the equation of motion. Moreover, we show that
in the presence of quenched disorder, these constraints
also generate avalanches of growth. These avalanches are
irreversible growth events that become relevant near the
depinning transition. We show that the avalanches dis-
play a singular behavior at the depinning transition that
is responsible for the divergence in the coefficient A.

In the second part of the paper, we discuss our results
in light of a recent study by Tang et al. [14]. In particu-
lar, the anisotropy in the medium is studied as a possible
source of the nonlinearity A(Vy)? at the depinning tran-
sition. ’

Consider a one-dimensional elastic interface moving in
a two-dimensional disordered medium of longitudinal size
L. A discrete model for such an interface is defined in
the square lattice by the height values {yx}x=1,.,r. The
interface moves under the influence of an external force
F = (0,F), and fluctuates in the longitudinal or = di-
rection, and transversal or y direction. The strength of
these fluctuations is controlled by the elastic constants v,
and vy, respectively. For the kth column and at a given
time, the z and y components of the total force vector
are given by

fy(k) = vy (Ys1 + Yr—1 — 2yx) + n(k,yx) + F, (6a)

fz:(k) = -V + n(k3yk)' (6b)

The first term on the right hand side of (6a) includes
the elastic force acting to make the interface smooth.
For the z direction we include a constant force of value
—v, that mimics the elastic nearest-neighbor interac-
tion, and opposes longitudinal motions [15]. The random
force, which mimics the effect of quenched disorder in the
medium, is represented by 7n(k,yx), and it is an uncor-
related random number with uniform probability distri-
bution between [—A, A]. 7 represents a repulsive force
for positive values and an attractive or pinning force for
negative values. A site at the interface moves forward
or laterally only when the respective total force becomes
bigger than zero. Therefore, the kth column and its near-
est neighbors are updated in the following way:

ye=yr+1 if fy(k)>0, (7a)
Yer1 =y if  fy(k) >0,
(7b)
Ye—1 =Y if fz(k) > 0.

Equations (6a) and (7a) correspond to the model intro-
duced by Leschhorn [9] to study an elastic interface de-
scribed by the QEW equation, and they are equivalent to
the discretization of (5). Equations (6b) and (7b) are the
simplest generalization of the model to include longitudi-
nal motions. A longitudinal motion to a nearest-neighbor
column is allowed if the neighboring column is smaller
than the column considered. After the longitudinal mo-
tion, the interface becomes a multivalued function of the
longitudinal coordinate z [see Fig. 1(a)]. The generalized
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FIG. 1. Sketch of the effect of longitudinal motions of a
site at the interface: (a),(b) for an untilted interface, and (c)
for a tilted interface with m = 1 as defined in the text. A
longitudinal motion (a) produces an effective avalanche (b)
in the nearest-neighbor column due to the application of the
generalized SOS condition. The size of the avalanche, s, is
larger for the tilted interface than for the untilted one, as can
be seen comparing (b) and (c).

SOS condition is then applied in order to transform the
interface into a single-valued function, by defining the
interface with the highest value of the height. This pro-
cess generates a transversal avalanche of growth in the
neighboring column, as shown in Fig. 1(b). This growth
event occurs regardless of the value of the noise in the
neighboring column.

We perform numerical simulations in a square lat-
tice of size L = 1024. Helical boundary conditions
yr = y1 + m L, where m = (Vy) is the average external
tilt, are imposed on the interface in order to study the
interface velocity as a function of the tilt [16,17]. Figure

v(m,f)

0.0 " N "
-2.0 -1.0 0.0 1.0 2.0

FIG. 2. Plot of the velocity v(m, f) as a function of the
average tilt m of the interface for values of the reduced force
from f = 0.19 (bottom) to f = 1.38 (top). The parame-
ters are v, = 0.4, v, = 1.0, and A = 3.0. The system size
is L = 1024, and results are averaged over 50 independent
realizations of the disorder. The “closing” of the parabolas
shows that a diverging nonlinear coefficient is present in the
equation of motion, as was observed in Ref. [2].
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2 shows the tilt dependence of the velocity of the inter-
face for the value v, = 0.4. In the following, we fix the
values v, = 1.0 and A = 3.0, since our results do not
depend on these parameters. We see a parabolic depen-
dence of the velocity with the tilt, with the parabolas
becoming steeper when F' — Ff corresponding to an in-
crease in A as in (4). This fact indicates that the model
belongs to the DPD universality class for this choice of
V. Moreover, the model presents a transition at a crit-
ical value v, . If the value of v, is increased such that
Vg 2 Uy, = A, then the QEW result is found. Specifi-
cally, we find that v is independent of m, indicating that
A = 0 for any force. The fact that f, is always negative
for v, > A explains this transition: longitudinal motions
cannot occur and one recovers the model of Ref. [9].

The different parabolas obtained for a given value of
vy < Vg, can be rescaled using the scaling ansatz [2]

v(m, f) ~ f g(m?/f**%), (8)

where g is a universal scaling function. Support for (8)
is provided by the data collapse shown in Fig. 3, where
we replot the data of Fig. 2 and the data obtained for
v, = 1.2, v, = 2.0, and v, = 2.8 [18]. The scaling
function g becomes flatter as v, — v, indicating that
the prefactor of A in (4) goes to zero, even though the
singularity associated with f is still present as long as
Vg < Vg,

In the following, we argue that the divergence in A
is explained by the singular behavior of the size of the
avalanches of growth produced by the generalized SOS
condition.

According to (7), the interface can advance in two in-
dependent ways. One way is via a transversal motion (if
fy > 0), and the other is via a longitudinal motion (if
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FIG. 3. Data collapse of the data of Fig. 2 (v, = 0.4) and
the data corresponding to v, = 1.2, v, = 2.0, and v, = 2.8
(shown from bottom to top, respectively), plotted according
to the scaling relation of Eq. (8). The scaling function be-
comes flatter as v, — v,, = A, indicating the transition to
the QEW universality class. Each set of curves is shifted for
clarity.
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fe > 0) plus the transversal avalanche in the neighbor-
ing column. In order to determine the relevant growth
mechanism near the depinning transition, we study the
mean value of the number of longitudinal and transver-
sal motions per unit time n, and n,, respectively, as a
function of the force. For a DPD interface characterized
by v, = 0.4, we find

na:(.f) ~ f‘Y:,-,
(9)
ny(f) ~ 7,

with v, ~ 0.60 and v, ~ 0.78. Both quantities go to zero
at F,, since the velocity vanishes at the depinning transi-
tion. However, the ratio n,/n, ~ f~%18 diverges at F,,
indicating the relevance of longitudinal fluctuations for
the motion of the interface at the depinning transition.
This fact might be explained as follows. For forces close
to F, the velocity is almost zero and the interface moves
in a very irregular way, jumping from one metastable pin-
ning configuration to another. In this “jerky” motion the
interface takes advantage of longitudinal motions, rather
than transversal ones, to surround and overcome the im-
purities, and the ratio n,/n, increases near F,.. This also
implies that avalanche events become relevant for the mo-
tion of the interface only in the vicinity of the depinning
transition.

We also study the mean value of the size of the
avalanches produced by the generalized SOS condition
per unit time (s) as a function of the tilt and for different
forces. Figure 4 shows the results. As it turns out, (s),
as well as the velocity [26], has a parabolic dependence
on m. These parabolas become steeper as F — F.F, and
we can fit (s) to

(s) = so + A, m?,

(10a)
with
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FIG. 4. Plot of the average size of the avalanches (s) pro-
duced by the generalized SOS condition as a function of the
tilt m, for the same forces and parameters as in Fig. 2.



52 SINGULARITIES AND AVALANCHES IN INTERFACE GROWTH. ..

Ag ~ f7¢ (10b)
and ¢ ~ 0.64 the same exponent as in (4). The parabolas
can also be rescaled using the scaling ansatz (8) with the
same value of 8 used for the velocity curves.

As shown in Fig. 1(c), the size of an avalanche is larger
for the tilted interface than for the untilted one. This ex-
plains the increase of (s) with the tilt, exemplified in Fig.
4 for a given fixed force. Moreover, since the relative oc-
currence of longitudinal motions and avalanches is larger
near the depinning transition than away from it [see Eq.
(9)], the same external tilt will cause a larger increase
in the average (s) near F. than for F > F.. Thus the
coefficient A, that measures the variation experienced by
(s) due to a change in the average tilt of the interface,
increases its value as ' — F} and the parabolas become
steeper.

Notice that the relevance of longitudinal motions and
avalanches of growth near F, implies that the velocity
is determined by the size of the avalanches, v « (s}, so
that A o« A;. Thus, we argue that the singularity of the
coefficient A can be explained by the same divergence ob-
served in A,. The motion of the interface near the depin-
ning transition is entirely dominated by the avalanches
of growth produced by the generalized SOS condition.

The same behavior can be predicted for the other mod-
els of the DPD universality class. All these models share
a constraint in the growth rule of the interface height that
generates avalanches analogous to the ones in the present
model. In the model of Ref. [4] a slope constraint is ap-
plied to the interface that implies a readjustment of the
height regardless of the value of the noise. The so-called
erosion of overhangs in the model of Ref. [5] corresponds
to our generalized SOS condition. And the model of Ref.
[19] presents a restricted SOS condition that produces
avalanches of growth (see Ref. [20]).

The relevance of the constraint imposed on the slopes
might explain some experimental results as well. The
agreement between the exponents of the paper burning
experiment of Ref. [24] and the imbibition experiments
of Ref. [5], with the exponents of the DPD universality
class, can be understood due to the erosion of the invaded
region observed in experiments being analogous to the
erosion of overhangs imposed in the numerical models.

Next, we discuss our results in light of a recent analyt-
ical study by Tang et al. [14]. In this study the univer-
sality classes are classified according to the dependence
of the threshold force on the slope F.(m), instead of the
dependence of the velocity v(m, f) on the slope, as was
originally proposed by Amaral et al. [2]. Tang et al. also
propose a set of scaling relations that explain most of
the exponents obtained in the numerical calculations [2].
They also show that for the DPD class of models the
critical force depends on the external tilt in the form [14]

Fc(m) — Fc(m = O) ~ —lmll/"(l—a), (11)

where v is the correlation length exponent, so that the in-
terface tilted away from the horizontal direction (m = 0)
is characterized by a smaller depinning threshold. In
terms of our results, the slope dependence of the thresh-
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old can be related to the presence of the SOS condition,
since a tilted interface favors the occurrence of avalanches
that, in turn, results in a decrease of the critical force
needed for the motion of the interface.

A more general question points to what are the mech-
anisms that induce such slope dependence in the de-
pinning threshold. In this regard, Tang et al. argue
that an anisotropic random force, characteristic for an
anisotropic disordered medium, is a possible mechanism
that generates such slope dependence. They propose the
flux line in superconductors as a typical example where
the proposed mechanism is present. The motion of the
flux line is the result of three different forces [14,21]: (i)
a smoothing line tension term; (ii) a Lorentz force per-
pendicular to the line; and (iii) the anisotropic random
force due to disorder in the medium.

To study the effects of the anisotropy of the medium,
we introduce a model for the anisotropic flux line that
incorporates the above considerations. We consider the
line to be described by an internal coordinate o (0 <
o < 1) that parametrizes the position of the flux line
7(0) = (z(0),y(o)) confined in a two-dimensional plane.

The three terms contributing to the local velocity of
the flux line d7/dt are the following:

(i) A line tension term given by —(1/,/g)0A/é7 that
minimizes the line energy A = fol /g do, where g =
|d7/da|?. .

(ii) A Lorentz force F = F#, where 7i(d) = (ng,n,) is
the unit normal at position 7(c), and F' = |F| is constant.

(iii) An anisotropic random force 7j(0) = (n(0), ny(0))
that describes the effects of the impurities, where 7, and
7y are uncorrelated random forces with zero mean and
amplitudes A, and A,, respectively. The anisotropic
case corresponds to A, # A,.

We propose the following equation of motion for the
anisotropic flux line:

difc) 1 SA

iy = Fii(o) + (o). (12)

A similar equation was considered by Maritan et al. [22]
to study the dynamical behavior of a growing interface in
time-dependent noise dominated problems. Notice that
this formulation allows for overhangs and it is invariant
under a general reparametrization of the curve [22,23].

A numerical integration of such an equation is quite
complicated, so we now introduce a model that corre-
sponds to the discrete version of (12), and is in the spirit
of the model of Egs. (6) and (7). The proposed flux
line model can be thought as a set of L beads. We iden-
tify the internal coordinate o with the label k of each
bead. Then 7, = (zk,yx), (k = 1,...,L) specifies the
position of the kth bead on the two-dimensional lattice.
We consider only integer values of zj and yi, and we
impose periodic boundary conditions. For each bead we
calculate a vector force f(k) = (f=(k), fy(k)) according
to

fulk) = ——— 94 | Fn(k),

N (13a)
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1 6A flux line. The strength of the external force F' = |F| is

fy(k) = _\/_g:km + Fny(k), (13b) kept constant, and its direction is determined by the lo-

cal unit normal at each position k, # = (nz(k), ny(k))-

A regularization condition is applied so that the beads

where gr = (Th+1 — k)2 + (Yrt1 — yx)?, and A = are not allowed to occupy the same column at the same
S k_, /G is the discretization of the line energy of the  time. A random force 7j = (14 (k),my(k)) is defined for

FIG. 5. Three different interfaces at the depinning transition of the models considered in this paper. (a) A typical DPD
interface at the depinning transition. The holes left behind by the interface correspond to the application of the generalized
SOS condition after a longitudinal motion of a site at the interface occurs. The holes are situated in regions of strong disorder
strength, so that the interface overcomes these pinning regions by longitudinal motions plus the application of the generalized
SOS condition [see Fig. 1(b)]. (b) A typical QEW interface at the depinning transition. Since no longitudinal motions occur,
the holes have disappeared. Notice the large slopes developed due to the absence of constraints to the local slopes of the
interface. (c) A typical anisotropic flux line “interface” characterized by anisotropic random forces of strength A, = 2.0 and
Ay = 3.0. The trajectories of the even beads are plotted in black, and the trajectories of the odd beads are plotted in gray.
The flux line takes advantage of the allowed longitudinal motions to surround the strong pinning configurations, as can be
observed in the trajectories of the beads. Also, since A, < Ay, longitudinal motions are more favorable than transversal
motions. However, the fact that the flux line develops large slopes at the depinning transition, as the QEW interface, suggests
that all these mechanisms become “irrelevant” at the critical point. The absence of constraints in the local slopes generates an
interface characterized by large slopes and a roughness exponent close to one, as is observed also for the QEW interface.
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every point in the lattice. 7, and 7, are uncorrelated
random numbers uniformly distributed between [0, A;]
and [0,A,], respectively. We start with a flat configura-
tion at time ¢ = 0, and for a given time ¢ the position of
the kth bead is updated when the total force overcomes
the pinning effect of the impurities,

ye = ye+ 1 if  fy(k) > ny(k),

ye = yp— 1 if  fy(k) < —ny(k), (142)
o= w1 i LK) < (). (14D)

We have simulated this anisotropic flux line model for
two different sets of the strengths of the anisotropic ran-
dom forces: A, =2, A, =3 and A, =3, Ay = 2. Figure
5(c) shows a typical “interface” at the depinning transi-
tion obtained with the proposed flux line model, together
with an interface corresponding to the DPD model [Fig.
5(a)] defined by (6) and (7) for v, = 0.4, and a QEW
interface (5b) defined by (6) and (7) for v, = 3.0. Notice
the similarity between the QEW interface and the flux
line model: both models develop large slopes at the de-
pinning transition. This similitude is due to the fact that
both models are free of constraints in the local slopes. A
rather different interface is obtained when constraints to
the growth of the local slopes are imposed, as can be
observed for the DPD interface.

In our numerical simulation with the flux line model,
we first focus on the slope dependence of the threshold
force. We start from a flat line at time ¢t = 0, and we
apply a small external force F. Growth proceeds accord-
ing to Egs. (13) and (14) until the flux line reaches the
first pinning configuration and stops. Then, the value of
the force is slightly increased so that the line will move
until the next pinning configuration. The threshold force
F,, corresponding to a given system size, is identified as
the force for which the flux line moves a distance of the
order of the system size without finding a pinning con-
figuration. Figure 6(a) shows the threshold force F.(m)
as a function of the tilt m for the anisotropic flux line.
Contrary to the behavior of the DPD models for which a
decrease of the critical force with the tilt is expected [see
Eq. (11)], we find that for the anisotropic flux line the
critical force increases with the tilt for both sets of disor-
der strengths. We have also studied the slope dependence
of the velocity v(m, f) in order to identify the effective
coefficient A(f). We were able to identify a negative co-
efficient A that goes to zero at the depinning transition.
However, due to the large fluctuations of the velocity near
the depinning transition, our numerical results are not
good enough to obtain an estimation of the exponent ¢.
We notice that a negative vanishing A is consistent with
our findings for the threshold force. We also study the
scaling of the local width w with the size ¢ of the window
of observation w(f) ~ £%, and we find a roughness ex-
ponent a ~ 0.83 at the depinning transition [Fig. 6(b)].
We are left with the conclusion that the anisotropic flux
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line model considered in this study does not belong to
the DPD universality class. However, we notice that the
value of the roughness exponent is smaller than the ex-
pected value for the QEW universality, for which a ~ 1 is
found [25]. Therefore, we cannot conclude that the flux
line model belongs to this universality class either.

We wish to point out that the fact that we did not
find a DPD behavior in the proposed anisotropic flux
line model does not rule out the possibility that other
forms of anisotropy might generate a diverging A term at
the depinning transition, or the slope dependence in the
threshold force argued in [14]. A potentially important
difference between the discrete flux line model studied
here and the continuum model considered by Tang et al.
is that in Ref. [14] only the normal motion to the interface
plays a role, while the discrete flux line has an internal
structure, and we have explicitly included longitudinal
motions. A more general study is needed, and we propose
that other models of interface growth in disordered media
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FIG. 6. (a) Threshold force F.(m) for the anisotropic flux
line model as a function of the external slope m for disorder
strengths A, = 2, Ay = 3 (top), and A, = 3, Ay = 2
(bottom). (b) Log-log plot of the local width w(£) at the
depinning transition for the flux line model as a function of
the size of the window of observation £ for disorder strengths
A, = 2 and Ay = 3. The system size is L = 8196 and we
average over 100 realizations of the disorder. The dashed line
corresponds to a least squares fit and has slope a =~ 0.83.
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which might be suitable to include anisotropic effects,
such as the random field or random bond Ising model
[26], or the fluid invasion model [27], should be considered
as well.

In conclusion, we present a simple model for an elas-
tic interface moving in a disordered medium, which cap-
tures the relevant features of the two universality classes.
The origin of the singular behavior in the equation of
motion of the DPD class of models is explained by sim-
ple microscopic constraints— such as the erosion of over-
hangs in Ref. [5] or restricted SOS in [4]— imposed on
the local slopes of the interface that generates irreversible
avalanches of growth. Our results are discussed in light of
a recent study by Tang et al., where it was proposed that
the anisotropy in the medium generates a DPD behavior.
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We introduce and study a reparametrization invariant
flux line model for which the anisotropy can naturally be
considered. We find that the model does not present the
expected DPD behavior. However, we argue that other
manifestations of the anisotropy should be considered as
well, and more numerical work needs to be done in order
to determine the effects of the anisotropy on the motion
of interfaces in disordered media.
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